Research Article Some Relationships between the Analogs of Euler Numbers and Polynomials
نویسندگان
چکیده
We construct new twisted Euler polynomials and numbers. We also study the generating functions of the twisted Euler numbers and polynomials associated with their interpolation functions. Next we construct twisted Euler zeta function, twisted Hurwitz zeta function, twisted Dirichlet l-Euler numbers and twisted Euler polynomials at non-positive integers, respectively. Furthermore, we find distribution relations of generalized twisted Euler numbers and polynomials. By numerical experiments, we demonstrate a remarkably regular structure of the complex roots of the twisted q-Euler polynomials. Finally, we give a table for the solutions of the twisted q-Euler polynomials.
منابع مشابه
Viewing Some Ordinary Differential Equations from the Angle of Derivative Polynomials
In the paper, the authors view some ordinary differential equations and their solutions from the angle of (the generalized) derivative polynomials and simplify some known identities for the Bernoulli numbers and polynomials, the Frobenius-Euler polynomials, the Euler numbers and polynomials, in terms of the Stirling numbers of the first and second kinds.
متن کاملEnumeration of snakes and cycle-alternating permutations
Springer numbers are analogs of Euler numbers for the group of signed permutations. Arnol’d showed that they count some objects called snakes, which generalize alternating permutations. Hoffman established a link between Springer numbers, snakes, and some polynomials related with the successive derivatives of trigonometric functions. The goal of this article is to give further combinatorial pro...
متن کاملJ ul 2 00 6 ON THE ANALOGS OF EULER NUMBERS AND POLYNOMIALS ASSOCIATED WITH
Abstract. The purpose of this paper is to construct of λ-Euler numbers and polynomials by using fermionic expression of p-adic q-integral at q = −1. From these λ-Euler polynomials, we derive the harmonic sums of higher order. Finally, we investigate several interesting properties and relationships involving the classical as well as the generalized Euler numbers and polynomials. As an applicatio...
متن کاملRelationships between Generalized Bernoulli Numbers and Polynomials and Generalized Euler Numbers and Polynomials
In this paper, concepts of the generalized Bernoulli and Euler numbers and polynomials are introduced, and some relationships between them are established.
متن کاملDerivation of identities involving some special polynomials and numbers via generating functions with applications
The current article focus on the ordinary Bernoulli, Euler and Genocchi numbers and polynomials. It introduces a new approach to obtain identities involving these special polynomials and numbers via generating functions. As an application of the new approach, an easy proof for the main result in [6] is given. Relationships between the Genocchi and the Bernoulli polynomials and numbers are obtai...
متن کامل